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Abstract

Artificial Neural Networks (ANNs) have revolutionized fields such as
computer vision, natural language processing, and speech recognition. De-
spite their successes, current ANN models face limitations, including hal-
lucination, bias, and resource intensity. These challenges are attributed
to the innate limits of ANNs, which often prioritize memorization over
deeper reasoning. This article proposes a theoretical framework to an-
alyze the innate limitations of ANNs in reasoning. The framework is
applied to assess methods such as Synthetic Biological Intelligence(SBI),
Energy-Based Models(EBM), and Active Inference. The paper aims to
help those seeking to understand why LLMs struggle with reasoning and
to expand their toolkit by integrating insights from cognitive science and
biology within a computer science perspective.

1 Introduction

The impact of ANNs on modern life is undeniable, particularly in fields such as
computer vision [1], natural language processing [2–4], and speech recognition
[5]. These advancements are driven by innovations such as convolutional neural
networks [6], recurrent neural networks [7–9], generative adversarial networks
[10], transfer learning [11], attention mechanisms [12, 13], residual connections
[14], and reinforcement learning with human feedback [3]. However, the limita-
tions of current ANN models are becoming increasingly evident [15, 16].

Recent studies highlight significant issues in large ANN networks, including
hallucinations and deficiencies in logical reasoning and coherent decision-making
abilities [17–20]. These shortcomings are primarily due to the fundamental con-
straints of ANNs, which emphasize minimizing discrepancies between predicted
and actual outcomes. As a result, these models often prioritize memorization
over discovering deeper connections[21]. Although some evaluations and train-
ing tasks have been specifically designed to mitigate these issues [22], they fail
to overcome the core limitations in building comprehensive world models that
are essential for active reasoning and prediction.
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This article proposes a theoretical framework to analyze the shortcomings of
prevalent ANN models and reviews methods aimed at constructing world mod-
els, including energy-based models, Synthetic Biological Intelligence, and Active
Inference. These approaches seek to overcome existing limitations and advance
towards more sophisticated artificial intelligence capable of higher cognitive pro-
cesses. The paper aims to provide a theoretical guide for those grappling with
the reasoning plateau and those interested in leveraging insights from cognitive
science to improve current methods.

In section 2, we introduce a theoretical framework with unified notation
to streamline terminology and nomenclature, which will be beneficial for dis-
cussing subsequent methods. In section 3, we translate ANN models into this
framework, providing a detailed explanation of the issues mentioned earlier.
section 3.1 covers energy-based models, applying them within the framework
to address their static nature. section 4 introduces the Free Energy Principle
(FEP), explaining how minimizing free energy can lead to more effective mod-
els as a function of the following methods. In section 5, we analyze various
implementation methods based on FEP. Specifically, section 5.1 discusses and
analyzes biological implementations, while section 5.2 explores active inference
through Partially Observable Markov Decision process (POMDP). Finally, in
section 6, we summarize our findings and suggest future research directions in
this promising field.

2 Unified Intelligence Framework

To formally analyze ANN models and those aimed at overcoming the reasoning
plateau, it is crucial to establish a general framework that can encompass both.
This is particularly important in addressing the challenges posed by inconsistent
notation, terminology, and nomenclature across disciplines. A unified framework
will serve as a common language, enabling rigorous comparison and analysis of
these models.

Generally, the problem of intelligence can be described as an intelligent agent
a operating within an environment, where the environment is composed of var-
ious states, usually referred to as hidden states or latent states, denoted by h.
The environment transit from state to state in accordance with the second law
of thermodynamics, which states that every system tends toward dissipation, as
shown in fig. 1. In other words, each state evolves from one to another in the
direction of higher entropy.

The primary objective of an agent is to interact with its environment to
maintain homeostasis, thereby resisting entropic forces amidst varying states.
Without this resistance, the agent would merge into the environment and lose
its distinct identity (see fig. 1 (b)).

The agent possesses its own sensory system, which senses the environment 1

1The environment could include parts of the agent itself that need to be sensed by the
sensory system. For example, an animal would have no awareness of its limbs without actually
feeling or seeing them.
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Figure 1: Entropy evaluates the level of disorder in a system. According to the
second law of thermodynamics, any closed system tends to transition from a
low entropy state (a) to a high entropy state (b). In (a), there are three distinct
clusters of nodes, each of which can be considered an object. For each object,
all others are part of the environment. As entropy increases, these objects can
no longer be distinctly identified as they blend into the environment.

Figure 2: Mapping between Hidden States and Sensory States.
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and generates sensory states, denoted s. However, the size of the sensory state
set S is much smaller than the set of environmental states H. Consequently,
the mapping between environmental states and sensory states is not one-to-one
due to the limited precision of the sensory system.

To remain within low-entropy hidden states H⋆ ⊂ H, the agent must take
actions y to influence the environment. Due to the inaccessibility of the hidden
states, the agent infers these states by observing whether the sensory states falls
within the set of S⋆ ⊂ S, known as the preferred sensory state, corresponds to
H⋆, as shown it fig. 2.

To make optimal decisions that lead to preferred sensory states, the agent
needs to use sensory states to infer hidden states, effectively reversing the many-
to-one mapping.This process involves determining a probability density func-
tion, known as the posterior belief p(h | s), which answers the question of which
hidden state caused the given sensory state. Using on Bayes’ rule, it can be
computed using prior beliefs p(h), the likelihood model p(s | h), and model
evidence p(s).

p(h | s) = p(h)p(s | h)
p(s)

(1)

However, the marginalization operation might be analytically intractable,
especially when there is a near-infinite number of h mapping to the same s
in complex cases. Variational (Bayesian) inference approximates the posterior
belief using qmθ

(h), where m denotes the agent’s inference model with its up-
datable model parameters θ (in this article, mθ will be dropped for clarity).

The agent’s goal is to minimize the divergence between the true posterior
belief p(h | s) and the approximate posterior belief, thereby improving its infer-
ence of hidden states. Based on these inferences, the agent evaluates possible
actions y from the action set Y using eq. (2) to score each action, where f is
the score function, and y⋆ is the optimal action.

y⋆ = argmax
y∈Y

f(y, q(h),S⋆) (2)

While different actions may have specific targets, such as reducing uncertainty
about hidden states, they ultimately aim to guide the agent towards the pre-
ferred hidden state H⋆. After an action affects the environment, the hidden
state transitions to a new state, and the process begins anew. At the same
time, the agent also have capability to update its approximation q to better
match p , leading to improved predictions of hidden states and stabilization in
the environment.

In the following sections, we will analyze different approaches within this
context, focusing on ANN models and those aimed at advancing beyond the
reasoning plateau.
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Figure 3: A cycle where the agent uses sensory data to deduce hidden states,
then takes optimal actions to steer the hidden state towards a preferred direc-
tion.

3 ANN Limitations in Unified Framework

Transfer the ANN model in the framework mentioned above. The sensory state
s corresponds to the data point as model input, while y corresponds to the
model output for the specific data point. The aggregate of the actions’ score
corresponds to model logits.

The ANN does not aim to simulate the full feedback loop but instead fo-
cuses on processing sensory data to determine the optimal action, as shown in
the fig. 3. Since there is no direct way to access the probability densities p and
q, one uses mathematical tools such as KL divergence to minimize the diver-
gence between the two probability densities. Instead of directly evaluating this
divergence, ANN models often use a surrogate approach by introducing ŷ, the
ground truth action annotated or augmented as in self-supervise learning, by
the model designer.

Since both y and ŷ are often discrete, it is straightforward to define a cost
function L, such as cross-entropy loss, to measure the difference between y and
ŷ. This difference serves as the basis for optimization using gradient descent.

L = ∥ŷ − y⋆∥ (3)

ANNs reduce complexity by breaking the feedback loop, simplifying the
problem to focus solely on sensory data and optimal actions, as shown in fig. 4.
With the help of optimization methods such as gradient descent, this approach
has significantly contributed to the success of AI today, enabling numerous
downstream applications. However, it also limits the capabilities of models in
several ways.

Firstly, breaking the feedback loop removes the dynamics that drive the
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Figure 4: ANN under framework

model’s approximate density q closer to the true distribution p. As a result, the
model requires continuous input of shuffled data and relies on gradient descent
as the primary motivation for updates, rather than allowing the agent to actively
sense the environment and autonomously evaluate its actions.

By focusing solely on end-to-end approaches, parts of the agent effectively
become a black box. The approximate density q, the score function, and the nor-
malization of different actions are all obscured within this black box. This lack
of transparency makes it difficult to ensure that these components are mean-
ingfully represented within the model, raising concerns that the network might
simply be functioning as a large hashtable. Some studies suggest that LLMs
struggle with tasks requiring reasoning, particularly in areas like mathematical
deduction. The opacity of the black box complicates efforts to control the model
through prompting, and the potential reliance on a large hashtable necessitates
vast amounts of training data. This approach also demands increasing num-
bers of parameters and consumes significant energy for task performance [23],
in stark contrast to the human brain[24].

Since the ground truth actions are annotated and generated by humans, the
agent’s performance is heavily dependent on the quantity and quality of these
ground truth actions. This reliance inherently limits the model’s potential,
confining ANNs to simplifying tedious tasks rather than engaging in creative
work. Even in AI-generated content tasks, the model might merely compute an
average of the training data based on the given prompt.

These limitations underscore the need for more advanced frameworks that
can enhance reasoning abilities and reduce dependence on human-generated
ground truth actions for improved performance.
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Figure 5: Energy Base model under unified framewok

3.1 Energy-Based Models

Energy-Based Models (EBMs) were first introduced by [25] in 2003 to general-
ize independent component analysis. Later, [26] expanded on this concept to
unify various machine learning domains within a single framework, leveraging
the concept of energy. EBMs are distinct in their use of energy to quantify
the compatibility between an input s and an output y⋆. Unlike ANNs, which
explicitly output probabilities or logits, EBMs produce a non-negative scalar en-
ergy value G (using the same notation as Expected Free Energy in section 5.2)
for each possible input during inference through an energy function Eθ (where
we drop the parameter θ for consistency with earlier equations). Lower energy
values indicate a higher preference by the model, while higher energy values
correspond to lower preference.

Formally, the energy function can be described as follows:

G = E(s) (4)

p(y|s) = exp (E(s))∑
s∈S exp (E(s))

=
exp (E(s))

Z
(5)

Since EBMs primarily focus on the energy score of single action, obtaining a
probability distribution as required in generative tasks necessitates computing
the partition function Z as shown in eq. (5). This involves evaluating all possible
actions and explicitly normalizing them fig. 5. In contrast, ANNmodels generate
logits that implicitly consider all possible s, allowing for direct normalization.

The goal of training EBMs is to learn an energy function that reflects the sys-
tem’s natural preferences. However, computing the partition function is compu-
tationally challenging, making it difficult to train EBMs using gradient descent
methods, as each update requires this computation. Although some methods,
such as Markov Chain Monte Carlo (MCMC), can approximate the partition
function, they do not fully alleviate the computational burden [27]. Conse-
quently, EBMs are commonly used in tasks involving comparisons, where the
partition function cancels out, eliminating the need for integration and sum-
ming.
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In summary, EBMs expose the limitations of the ANN framework concern-
ing the range of problems it can solve. While ANNs rely on implicit normal-
ization, requiring a normalized dataset, researchers have invested significant ef-
fort in constructing datasets and developing advanced normalization techniques.
EBMs, by contrast, offer greater flexibility by removing the need for normaliza-
tion, theoretically enabling them to solve a broader range of problems. How-
ever, due to the need for probability density estimation during inference and
optimization, EBMs face the intractable partition function problem, which is
only partially mitigated by approximate methods.

When integrating the EBM approach into a unified framework, as shown in
fig. 5, it shares similarities with ANN models in that it only handles the process
from sensory data to optimal action and cannot function as an autonomous
learning model. While EBMs reveal more about the planning step and define
the energy function to give the model a world representation, expanding the
task domain, they also introduce the intractable partition function. Addition-
ally, like ANN models, EBMs require ground truth feedback, sharing the same
limitations, such as a lack of reasoning ability and dependence on annotated
data.

4 The Free Energy Principle

This section delves into the theoretical aspects of FEP without delving into
implementation details, as it forms the foundational basis for the methodologies
discussed in the subsequent sections.

FEP, proposed by Karl Friston, unifies several global brain theories that ex-
plain the optimization behavior of agents, including the Bayesian brain, efficient
coding hypothesis, cell assembly & correlation theory, and Neural Darwinism.
It introduces the concept of free energy as a common objective of perception
and action, which can be formulated as the minimization of the discrepancy
between the model and the world, a notion not traditionally noted in cognitive
science.

The free energy can be expressed in three forms as shown in eqs. (6) to (8):

F = Eq(h)

[
ln

q(h)

p(h | s)

]
︸ ︷︷ ︸

Divergence

− ln p(s)︸ ︷︷ ︸
Surprise

(6)

= DKL[q(h) || p(h)]︸ ︷︷ ︸
Complexity

−Eq(h)[ln p(s | h)]︸ ︷︷ ︸
Accuracy

(7)

= −Eq(h)[ln p(s, h)]︸ ︷︷ ︸
Energy

−H[q(h)]︸ ︷︷ ︸
Entropy

(8)

In eq. (6), the first term, divergence, evaluates the difference between the
approximate posterior belief and the true posterior belief, while the second
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term quantifies the surprise of the data. Minimizing the free energy reduces
this divergence and the surprise, implying that the agent’s internal model of the
world closely matches the real world.

In eq. (7), the first term, complexity, assesses the difference between the prior
belief (the agent’s recognition of the world without any sensory input) and the
approximate posterior belief. This represents how much the belief needs to
change (i.e., update the model) to explain the sensory data. The second term
measures the accuracy of these predictions, which, with the negative sign, can
be interpreted as prediction error. Minimizing the free energy finds a balance,
using the simplest model that yields the least loss, akin to Occam’s Razor.

In eq. (8), the first term, energy, derives from statistical physics, describing
the energy required to move the system into this configuration from a baseline
configuration. The second term is the entropy of the approximate posterior
belief. Minimizing free energy requires the agent to find a baseline configuration
that minimizes the effect to encompass all configurations and maintain high
uncertainty about the hidden state without sensory inputs, following Jaynes’s
maximum entropy principle.

In the next section, we will review some implementations related to the
Free Energy Principle, providing practical insights into how this theoretical
framework is applied.

5 Free Energy Principle’s Implementations

5.1 Synthetic Biological Intelligence

Synthetic Biological Intelligence (SBI) systems [28] can be broadly defined as
the intentional synthesis of biological and silicon substrates in-vitro, designed to
exhibit goal-directed or otherwise intelligent behavior. These systems typically
do not involve whole organisms but utilize stem cell-derived neural tissues. Early
research [29] has demonstrated that in vitro neurons can adaptively respond to
incoming stimulation and engage in behaviors consistent with phenomena such
as blind-source separation.

The use of closed-loop paradigms in in vitro neuron experiments—whereby
neural activity is measured, applied to an environment, and the updated envi-
ronmental information is fed back into the neural system—has become a critical
area of study in SBI. A recent experiment provides significant support for FEP
[30]. In this experiment, neural cultures, grown from human stem cells, were
used to play a simple game called Pong. The neural agent perceives the motion
of the ball through electrical stimulation and controls a paddle to move left
and right to intercept and bounce the ball. Successful interceptions result in a
predictable stimulus delivered across all electrodes simultaneously at 100Hz for
100ms, while failures lead to an unpredictable stimulus (150mV voltage at 5Hz
for 4 seconds).

Over time, the neural cultures learn and improve their performance, as in-
dicated by the increasing average duration of the rally. Interestingly, the agent
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Figure 6: SBI implementation under unified framework

does not have explicit knowledge of the relationship between the stimulus type
(predictable or unpredictable) and the correct action. Nevertheless, the agent
tends to refine its behavior towards achieving more predictable outcomes, which
corresponds to minimizing free energy.

This experiment can be framed within the unified framework. In this con-
text, the simulated game environment represents the hidden states h, the sensory
state s is provided to the cell cluster through a sensory region of the high-density
multielectrode array chip, and the actions produced y⋆ by the neural cultures
influence the hidden states by affecting the motor region of the chip.

Although this implementation demonstrates the full cycle described in the
unified framework fig. 6, effectively creating an autonomous agent in a mini-
game world, several limitations remain. First, a significant ”black box” problem
persists as the internal processes within the cell clusters are not fully understood,
necessitating further advancements in neuroscience to elucidate the mechanisms
at play. Second, the implementation requires sustaining the neural cultures
with appropriate nutrients, which poses significant challenges for scalability with
current technology.

5.2 Active Inference

Active inference, derived from the FEP, posits that agents aim to minimize
Variational Free Energy to ensure that they observe states they prefer with high
probability [31]. Expanding on this, active inference introduces the concept of
Expected Free Energy to encompass action selection, planning, and learning.
Later work by the author unified these two forms of energy as the same optimal
goal for agents [32].

Under this theory, rather than passively observing data, agents continuous
actively infer what future data will be observed under avaliable action2. They
evaluate actions based on their preferred hidden states, which correspond to
the types of data they wish to observe but cannot directly access. To evaluate

2The term ”action” here is a simplification of the term policy, which refers to a sequence
of actions defined in Active Inference, and correpdoing define in the framework for Active
Inference’s action
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Figure 7: Partially Observable Markov Decision Process of Active Inference

different actions, agents use Expected Free Energy, which can be expressed in
various forms as shown in section 2:

Gy = −Eq(s,h|y) [ln q(h|s, y)− ln q(h|y)]︸ ︷︷ ︸
Epistemic Value

−Eq(s|y) [ln p(s|S⋆)]︸ ︷︷ ︸
Pragmatic Value

(9)

= DKL[q(s|y)∥p(s|S⋆)]︸ ︷︷ ︸
Risk

+Eq(h|y)[H[p(s|h)]]︸ ︷︷ ︸
Ambiguity

(10)

Each Expected Free Energy is computed for a specific action, denoted as Gy,
where S⋆ represents the set of observations the agent prefers to see, a subset of
all possible observations S.

In eq. (9), the first term, epistemic value, is negative information gain. By
minimizing Gy, this term is maximized. The second term, pragmatic value,
is the negative probability of preferred future observations. Minimizing Gy

maximizes this term as well. The optimal action is the one that strikes the best
balance between resolving uncertainty and moving toward the preferred future
state.

In eq. (10), the first term, risk, borrowed from economics, is the divergence
between predicted and preferred observed data. The second term, ambiguity,
represents the level of uncertainty in the expected state.

On the implementation side, each action can be represented using a Partially
Observable Markov Decision Process (POMDP) with Variational Message Pass-
ing, as shown in fig. 7.POMDP is a variant of the Hidden Markov Model (HMM).
The key difference between a POMDP and an HMM is that in a POMDP, the
agent has control over state transitions through its actions, whereas in an HMM,
the transitions are not influenced by the agent.

The four parameters of the POMDP are as follows: D is the prior belief,
representing a blind guess about the world without sensory input, stored within
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the agent’s model. A is the Emission Probability, representing the likelihood
of observations given a hidden state, also stored within the model. By is the
Transition Probability, varying across different POMDPs for different actions y.
S⋆ is the preferred state, defined by the model designer or, in biological terms,
by evolution, which is used to determine Expected Free Energy G, as shown in
fig. 7.

Applying the unified framework to Active Inference, as shown in fig. 8, the
real hidden state at time step n, hn, causes a sensory state, sn, through a
generative process. The agent, besides inferring what is currently happening in
the real world, h′

n, will also infer the expected hidden state at the next time
step, h′

n+1, assuming the agent execute the action yn.
The agent will further use h′

n+1 to predict what sensory states s′n+1 will
be expected, by using the stored emission probability. Accurate prediction of
future events and their subsequent evaluation relies on the presence of a robust
world model; without such a model, the agent lacks the necessary framework to
make informed inferences and decisions.

After obtaining the s′n+1, the agent could use the Expected Free Energy
mentioned above to evaluate whether the s′n+1 is preferred by the agent. Parallel
evaluations for different actions can be performed, and the action yielding the
lowest Gy

n+1 is selected as the optimal action y⋆n. This y⋆n might or might not
be the same as the one determined in the previous timestep. For example, if
the action at timestep n − 1 was ”go eat that apple in front,” the agent may
start walking toward the ”apple.” However, at the following timestep n, as the
agent gets closer to the ”apple” with new sensory states, the inferred hidden
state at n may reveal that the object in front is actually a box with an ”apple”
printed on it. The optimal action after evaluating the Expected Free Energy at
timestep n could then be ”open the box,” thereby aborting the previous action
without finishing it.

The optimal action yn will then affect the real world by transitioning the
hidden state from hn to hn+1, as the current timestep move from n to n + 1.
From agent’s perspective the new hidden stateshn+1 will in turn causes a new
round of sensory data sn+1 and an inferred hidden state h′

n+1, by the same
process described for timestep n. The expected hidden state for the following
timestep h′

n+2 will be computed, but more importantly, the difference between
the inferred hidden states and the expected hidden state at timestep n+ 1 will
be evaluated and propagated back to the previous step to correct or support
previous inferred hidden states (short-term or long-term beliefs, even memory)
or adjust the emission probability and transition probability.

Active inference offers several advantages. One of the main benefits is that
there is no clear distinction between training and optimization; learning occurs
continuously as the agent interacts with its environment, avoiding the energy-
consuming pre-train fine-tune stage before use. Additionally, this model is much
closer to true intelligence, as it involves active thinking about the world rather
than merely reacting to stimuli. Constructing the feedback loop can motivate
the automated agent to act, infer, and learn toward the preferred sensory states.

However, there are also some limitations. Active inference models tend to be
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Figure 8: Active inference under the unified framework

much slower than ANNs since they require both forward and backward passes
during inference, whereas ANNs typically only require a forward pass. The
parameters such as emission probability, transition probability and likelihood,
could be limiting as for certain tasks the potential state space is very large,
making it difficult to represent using these metrics. Moreover, most applications
and implementations of active inference are currently done using MATLAB,
which is not open-source and can be a barrier to widespread adoption, although
some packages are starting to gain popularity in Python[33]. Another challenge
is the ongoing research required to accurately define the preferred states for the
agent, as defining complex preferred states remains unclear. Furthermore, the
model does not clearly explain how to select potential actions from the action
space to compute G. If the action space is large, iterating over to find the best
action will be very energy-consuming.

6 Potential Implications and Conclusion

In this article, we have explored the limitations of current ANN models and
their impact on reasoning capabilities. By introducing a unified theoretical
framework, we provided a consistent approach to analyzing various models, in-
cluding ANNs, EBMs, and Active Inference. Our analysis revealed that while
ANNs have significantly advanced AI through end-to-end optimization, they
suffer from inherent limitations such as a lack of incentive to build an internal
world model, reliance on human-annotated data, lack of transparency, and en-
ergy inefficiency. Although EBMs offer a more structured approach with the
inclusion of a world model, they introduce challenges such as the intractable
partition function and share many of the same limitations as ANNs due to their
dependence on annotated data.

By integrating concepts from Active Inference, particularly through the use
of POMDPs, we demonstrated how agents could potentially overcome some
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of these limitations by actively engaging with their environment, continuously
refining their world models, and improving decision-making processes. However,
the complexity of implementing these approaches remains a significant challenge,
highlighting the need for further attention from the computer science field to
aid in their development.

As AI continues to struggle with overcoming the reasoning plateau, drawing
inspiration from cognitive science and biological processes may be crucial for
advancing artificial intelligence toward more autonomous and capable systems.
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